The future of the camera is computational. Computational imaging technology, AI, and consumer mobile computing are the real drivers of innovation in digital imaging.

What is computational imaging? How does it work and what does it mean? These are the questions I want to answer. More than just another trendy tech buzzword, this is an entirely new way of recording and reproducing images. It is a total reinvention of the camera as we know it.

Because this topic is central to everything you’ll find on this site, I want to quickly introduce myself for any new readers before I get into it.

My name is Richard Lackey, I’m a producer, filmmaker, colorist (CSI), digital cinema technology and workflow specialist. Over many years I’ve built up practical expertise in the world of large format digital cinema and digital video. My driving passion, apart from creating beautiful images, is the future of digital imaging technology itself.

I’ve created this site as a platform to share my vision for the future of moving images.

What you’ll find here are practical methods and techniques to shoot cinematic quality video using your smartphone camera. I also explore 360 VR cameras and techniques to get the highest quality images from the most innovative digital cameras on the market. As a colorist I’ll show you how to achieve consistent color and create polished, professional looking videos. In addition to practical tutorials, I’ll share my thoughts and commentary on the evolution of mobile imaging technology.

The Evolution of Digital Imaging

Every April at NAB in Las Vegas, and September at IBC in Amsterdam I look at all the latest professional video technology, hoping to see real innovation. What’s become clear to me is that I’m looking in the wrong place. The imaging technology of tomorrow won’t be developed for these trade shows. It won’t take the form of traditional broadcast cameras, camcorders, or even mirrorless compact cameras.

While professional camera technology is stagnating, the consumer technology space is taking the lead.

Sales of traditional photo cameras, especially digital compacts, but also DSLR’s are falling. Mirrorless cameras are in many ways the pinnacle of large sensor photo (and video) camera technology. Stripped of redundant mechanical components, the camera has been simplified to a sensor and software.

From Hardware to Software

The next evolutionary step for all digital cameras is software. Computational imaging leverages AI and machine learning to indirectly synthesize images. This is achieved by contextually inferring information you don’t have based on the information you do. It’s a bit like taking an incomplete drawing, recognizing what it should be, and filling in the gaps yourself. The process is far closer to how your brain processes visual information than any conventional camera.

Digital imaging to this point is all about fidelity. The fidelity between the output of an image sensor and physical reality, and the fidelity of recorded data to the output of an image sensor. An ideal camera system faithfully captures and records light so it can be faithfully reproduced and displayed with minimal noticeable loss.

All of this assumes that the conversion of light to voltage, and voltage to data in an image sensor sets the absolute upper limit of fidelity. In a direct imaging system involving the kind of conventional signal processing that cameras typically employ this is absolutely true.

Human Vision is Computational

The human visual system is not a direct imaging system. We don’t see complete exposures of our full field of view like photographs or frames of video.

There are two types of photoreceptive cells that make up the retina. These are called rods and cones. Rods are responsible for low light vision and are not sensitive to color. Cones are responsible for color vision and have a high spatial acuity. A small area at the center of the retina called the fovea contains cones packed in sufficient density to see high resolution information. This represents only about the central 2 degrees of our field of view. The fovea is less than 1% of our retina but takes up over 50% of the visual cortex in the brain.

Of course, we perceive far more at any moment than this small fraction of high resolution information. This is because the brain constructs a complete picture in real-time from a stream of visual information from the eyes.

The Whole is Greater than the Sum of its Parts

This common saying has never been true of digital imaging. When dealing with a conventional digital imaging system, the whole is exactly equal to the sum of its parts. Just as you can’t turn lead into gold, it has been impossible to create pixels that were never captured.

One of the fundamental pillars of conventional digital imaging systems is the idea that it’s impossible to get out more than you put in. This is simply no longer true.

By contextually analyzing captured image data, it is possible to infer and create brand new image information.

This is different to what can be seen in some post production and signal conversion processes. Motion interpolated slow motion effects create new frames in between captured frames. Sophisticated scaling algorithms upscale HD to UHD, but there is always compromise. An upscaled HD image is not comparable to a native UHD image when they are directly compared.

However, computational imaging technology has the potential to change this.

What is Computational Imaging?

Computational imaging according to wikipedia:

Computational Imaging is the process of indirectly forming images from measurements using algorithms that rely on a significant amount of computing.

It is the “indirectly” part of this description which is most important to understand.

Direct Imaging

A simple example is to imagine a curved line. The resolution of the direct imaging system we are employing limits us to recording this line only using three points. Point A is the start of the line and Point C is the end of the line. Point B is half way along the curve between point A and point C.

A system which simply records the position of three points to reproduce the curve by connecting the dots will not accurately reproduce the original curve. Resolution limits the fidelity of our direct recording.

So, we increase resolution. We can measure and record the positions of five points, or even ten points along the line.

However, this simple system of passive direct reproduction still only connects the few dots we’ve recorded. The recorded information is displayed exactly as it was captured, but cannot deliver an accurate reproduction of the original line. Resolution still limits the fidelity of the recording.

At this point we can further increase the resolution, by measuring and recording hundreds of points along the line. Or we can take a different approach.

Indirect Imaging

Instead of increasing resolution, we can perform a bit more analysis on the five points we have. For instance, we can recognise that their positions relative to each other probably represent a continuous curve. Of course, this is an assumption, but it is based on the fact that this world of lines is made up mostly of continuous curves.

Based on this assumption we can build a virtual model of the original line. We can project a mathematically continuous curve passing through the five measured points. This model allows us to calculate the likely position of any number of virtual points along the curve. Our input resolution is limited to only five points, but the computed output resolution is infinite.

This analytic and interpretive process is an example of a contextually aware algorithm. The algorithm relies on underlying facts about the data it will receive and how to correctly interpret it. These algorithms can be rules based, or trained on known data sets to recognise patterns and build a contextual reference. This is the power of machine learning.

Imagine that we double up this rudimentary computational imaging system. This allows us to determine where this curve is located in 3D space. If our field of view shifts, we can calculate exactly where this curve will be relative to our position and everything else in our field of view. Unless the original curve changes significantly, we can achieve all of this without actually measuring the original curve again.

More Than Pixels

Our world, and therefore images of our world are full of predictable patterns. Light behaves in predictable ways. It is possible to predictably and accurately model objects, edges, colors, contrast, patterns, texture and movement.

Real world scenes can be analysed and modelled virtually, projected beyond the limits of direct recording by conventional hardware. A computational image of a projected model can be created at virtual resolutions, virtual color bit depths, even virtual frame rates. This projected model becomes the source of the computed pixels that make up the image you see.

This kind of approach to creating images is already happening. You can read about FiLMiC Pro’s “Cubiformcomputational imaging engine and FiLMiC LogV2 here: What is FiLMiC LogV2? and learn how to get the most from it using a color managed workflow here: Shoot and Color Grade FiLMiC LogV2 with the X-Rite Colorchecker Video.

Cubiform specifically models luminance and chrominance, calculating mathematical vectors based on the relative changes in sampled input pixel values over a certain spatial image area, it’s a very specific algorithm, but the principle is there nonetheless.

Simply capturing light is no longer the end, it is just the beginning.

The Rise of Mobile Photo and Video

Nowhere is this evolution more apparent than in the smartphone camera.

Today’s implementations are incomplete and admittedly flawed. Features such as SmartHDR, portrait mode and simulated depth effects are only a small step in this direction.

As this technology develops, it will be responsible for more than just augmenting an otherwise conventional camera. Much of the camera as we know it can be virtualized. The physics of light can be simulated by sophisticated algorithms that are fed a constant stream of visual information from multiple precision imagers.

It’s is the consumer electronics giants, specifically the largest players in mobile technology that have the incentive and profit potential to develop radical next generation computational imaging hardware and software. It requires a potential market on a mass consumer scale to justify the kind of development required.

Nobody fights harder to bring the best quality mobile imaging technology to the mass market year on year than smartphone manufacturers.

The Camera That’s Always With You

Consumer technology no longer simply solves a problem or performs a task. We assimilate technology into the very fabric of our lives. There is no better example of this than the smartphone.

Mobile photo and video is all around us. We are recording, documenting and sharing every important moment of our lives with each other. The camera has become an extension of how we experience, communicate and make sense of our lives and the world around us.

Many of us take this a step further. The rise of YouTube shows us the massive potential of consumer generated video content. Just as video production, distribution and consumption become decentralized, the future of professional imaging is developing in the consumer technology space.

The Power of Mobile Computing

Your smartphone of course, is more than just a camera. Serious computational imaging requires serious mobile computing power.

Thankfully, computing power, memory and functionality across desktop, laptop, tablet and mobile are converging towards a common point.

Desktop workstation performance has largely topped out over the past decade. We’re seeing incremental improvements to efficiency, multi core processing and on chip integration. This is in contrast to the brute force increase in clock speed we saw in the mid to late 2000’s.

Chip makers continue to pack ever smaller transistors in higher densities than ever before, and this has enabled the devices we hold in our hands to come ever closer to established desktop computing benchmarks. The rise of the GPU has enabled software to offload and process large data sets using complex algorithms rapidly and efficiently. 

Our devices are no longer simply becoming faster, they are becoming more sophisticated, smarter, and smaller.

You can’t ignore the radical potential of computational imaging technology and ever more powerful mobile computing. Combine this with a massive ready consumer market and you can understand why I’m so excited.

Watch this space, because this is the space to watch.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.